KL-33x2

Technical Documentation 2-Channel Input Terminal Thermocouple

Please keep for further use !

Edition date/Rev. date: Document no./Rev. no.: Software version: File name: Author:

02.04.1998 TRS - V - BA - GB - 0109 - 00 1.0 TRS-V-BA-GB-0109.DOC KOH

TRSystemtechnik GmbH Eglishalde 6 D-78647 Trossingen Germany Tel. +49 - (0) 7425 / 228-0 Fax +49 - (0) 7425 / 228-34

Imprint

TRSystemtechnik GmbH

D-78647 Trossingen Eglishalde 6 Tel.: (++49) 07425/228-0 Fax: (++49) 07425/228-34

© Copyright 1998 TRSystemtechnik

Guarantee

In our ongoing efforts to improve our products, TRSystemtechnik reserve the right to alter the information contained in this document without prior notice.

Printing

This manual was edited using text formatting software on a DOS personal computer. The text was printed in *Arial*.

Fonts

Italics and **bold** type are used for the title of a document or to emphasize text passages.

Passages written in Courier show text which is visible on the display as well as software menu selections.

"< >" refers to keys on your computer keyboard (e.g. <RETURN>).

Note

Text following the "NOTE" symbol describes important features of the respective product.

Copyright Information ©

MS-DOS is a registered trademark of Microsoft Corporation.

Revision History

i

Note:

The cover of this document shows the current revision status and the corresponding date. Since each individual page has its own revision status and date in the footer, there may be different revision statuses within the document.

Document created:

02.04.1998

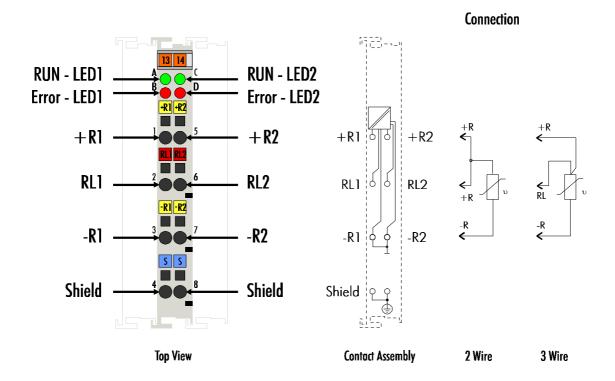

Revision	Date

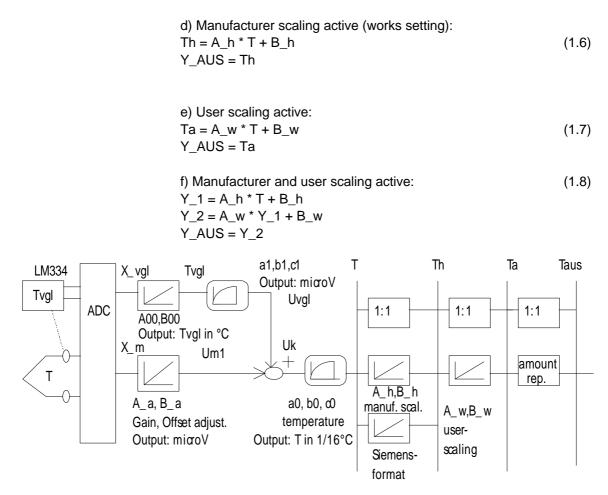
Table of contents

2-Channel Thermocouple Input Terminal KL3302/KL3312	5
Technical data	5
Description of functions	6
Terminal configuration	9
Register communication KL3302/3312	10
Annex	18

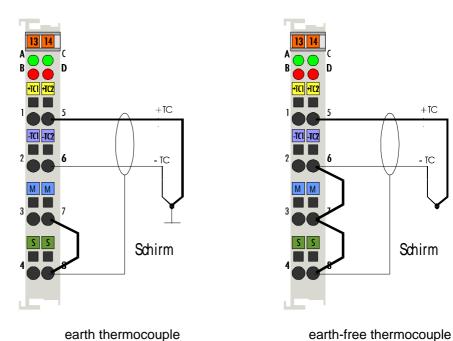
2-Channel Thermocouple Input Terminal KL3302/KL3312

Technical data	KL3302	KL3312	
Number of inputs	2		
Power supply	via the T-Bus		
Thermocoupler sensor types	Type J, K, L, B, E, N, R, S, T, U (Defa	ult; Type K), mV measurement	
Connection	2-wire		
Temperature range	within the defined range of each senso	r (default: Type K; -100° 1370°C)	
Resolution	0.1°C per bit, for mV measurement < 25 μ V, typ.15 μ V		
Wiring fail indication	No	Yes	
Electrical isolation	500 Vrms (T-Bus / signal voltage)		
Current consumption from T-Bus	65 mA typ.		
Bit width in the process image I: 2 x 16 bits data (2 x 8 bits control/status can be optionally inserted))			
Configuration	no address setting, configuration via the bus coupler or the controller		
Weight approx	75 g		
Operating temperature	0°C +55°C		
Storage temperature	-25°C +85°C		
Relative humidity	95%, no condensation		
Vibration/shock resistance	conforms to IEC 68-2-6 / IEC 68-2-27		
EMC resistance Burst / ESD	conforms to EN 61000-4-4 / EN 61000-	-4-2, limit EN 50082-2	
Installation position	any		
Type of protection	IP20		

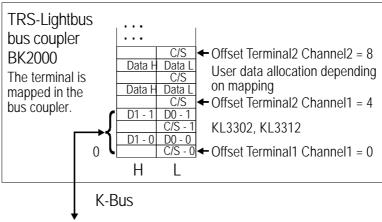
Description of functions

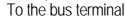

	The thermocouple terminal KL3302 or KL3312 (with wire breakage detection) is capable of evaluating thermocouple types J, K, B, E, N, R, S, T, U and L. Linearisation of the characteristics and determination of the comparison temperature take place directly in the terminal. Temperaturs are output in 1/10 °C. The terminal can be configured completely via the bus coupler or the controller. In doing so, it is possible to choose between various output formats and user-defined scalings can also be activated. Linearisation of the characteristic and determination and ofsetting of the comparison temperature (temperature at the terminal's terminal contacts) can also be deactivated.
Operating principle	Thermocouples belong to the category of active sensors. Here, the thermoelectric effect (Seebeck, Peltier, Thomson) is exploited. At the contact points of two electrical conductors made of different materials (e.g. iron and constantan), a charge shift takes place. A contact voltage comes into being that is a unique function of the temperature. This thermal voltage is both a function of the measured temperature T and also of the comparison temperature Tv at the terminal contacts of the thermocouple. As the coefficient is determined at a comparison temperature of 0°C, the influence of the comparison temperature must be compensated. To do this, the comparison temperature is converted to a comparison voltage that depends on the thermocouple type and this is added to the measured thermal voltage. The temperature is determined on the basis of the resulting voltage and the corresponding characteristic.
	Uk = Umeas+ Ucomp
	Taus = f(Uk)
Output format of the process data	By default, the measured value is output in 1/10 °C increments in 2's complement notation. Other notations can be selected by way of the feature register (e.g. signed integer, Siemens output format).

Measured value	hexadecimal output	Signed integer output	
-200,0°C	0xF830	-2000	
-100,0°C	0xFC18	-1000	
-0,1°C	0xFFFF	-1	
0,0°C	0x0000	0	
0,1°C	0x0001	1	
100,0°C	0x03E8	1000	
200,0°C	0x07D0	2000	
500,0°C	0x1388	5000	
850,0°C	0x2134	8500	
1000,0°C	0x2710	10000	

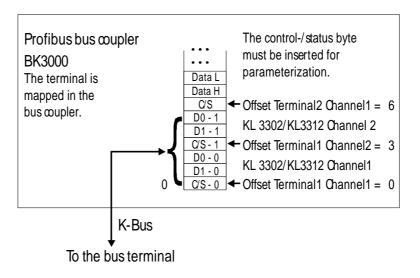

Voltage limits	 Uk>Ukmax: bit1 and bit6 (overrange and error bits) in the status byte are set. Linearisation of the characteristic is continued with the coefficients of the top range limit up to the end stop of the AD converter or up to the maximum value 0x7FFF. Uk<ukmin: (underrange="" 0x8000.<="" a="" ad="" and="" are="" bit0="" bit6="" bits)="" byte="" characteristic="" coefficients="" continued="" converter="" down="" end="" error="" in="" is="" li="" limit="" linearisation="" low="" miniu="" of="" or="" range="" set.="" status="" stop="" the="" to="" with=""> The red error LED is activated in the event of overrange or underrange. </ukmin:>			
LED indication	The four LEDs channel. Green LEDs: R On – normal op	indicate the operating state of the affiliated temrir	nal	
	process data is Red LEDs: ERI On: a wire brea in the invalid ra	transferred by the bus coupler for 100 ms.	e value is tic.	
Process data	basis of the foll X_vgl: Tvgl: Uvgl: X_R: Um1 A_a, B_a: A_h, B_h: A_w, B_w: Uk: T: Th: Ta: T_AUS: a) Voltage valu Tvgl = A00 * X_ Uvgl = a1 * Tvg b) Measured te	gl^2 + b1 * Tvgl + c1 emperature in 1/16°C:	(1/10 °C) (1.0) (1.1)	
	Um1 = A_a * X Uk = Uvgl + Un T = a0 * Uk^2 +	n1 - b0 * Uk + c0	(1.2) (1.3) (1.4)	
	c) Neither user T_AUS = T	nor manufacturer scaling active:	(1.5)	

Connection

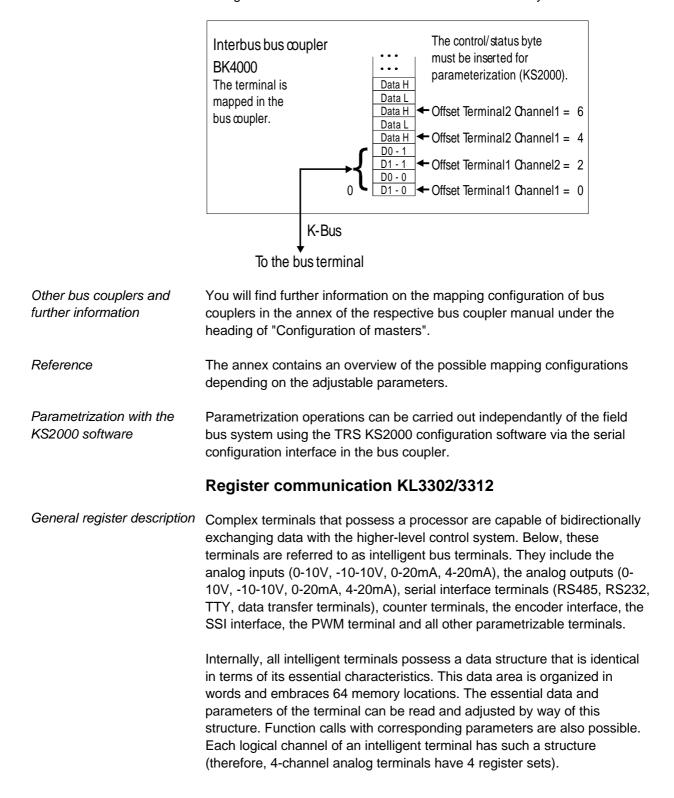

Owing to the difference inputs of the terminals, different connection techniques are recommended depending on the thermocouple design. In the case of earthed thermocouples, the earth is connected to the screen. If the thermocouple does not have an earth connection, the earth, screen and -TC1 or -TC2 contacts are connected to one another.



Terminal configuration


The terminal can be configured and parametrized by way of the internal
register structure.
Each terminal channel is mapped in the bus coupler. The terminal's data is
mapped differently in the bus coupler's memory depending on the type of
the bus coupler and on the set mapping configuration (eg.Motorola / Intel
format, word alignment,...). For parametrization of a terminal, the control
/status byte must also be mapped.TRS Lightbus
Coupler BK2000In the case of the TRS Lightbus coupler BK2000, the control /status byte is
always mapped besides the data bytes. It is always in the low byte at the
offset address of the terminal channel.

Profibus Coupler BK3000


In the case of the Profibus coupler BK3000, for which terminal channels the control /status byte is also to be inserted must be defined in the master configuration .If the control /status byte is not evaluated, the KL3302/KL3312 occupies 4 bytes of input data (2 bytes of user data per channel).

Interbus Coupler BK4000

By default, the Interbus coupler BK4000 maps the KL3302/KL3312 with 4 bytes of input data (2 bytes of user data per channel). Parametrization via the field bus is not possible. The KS2000 software is required for configuration if use is to be made of the control /status byte.

This structure is broken down into the following areas: (You will find a list of all registers at the end of this documentation).

	Area	Address		
	Process variables	0-7		
	Type registers	8-15		
	Manufacturer parameters	16-31		
	User parameters	32-47		
	Extended user area	48-63		
Process variables	R0 - R7 Registers in the termin	al's internal RAM:		
	The process variables can be used in	addition to the actual process image		
	and their functions are specific to the terminal.			
	R0 - R5: These registers have a terminal type.	function that depends on the		
	R6: Diagnostic register The diagnostic register may contain ac the case of serial interface terminals, f	-		
	occurred during data transfer are indic	cated.		
	R7: Command register High-Byte_Write = function parameter			
	• •			
	Low-Byte _Write = function number			
	High-Byte _Read = function result			
	Low-Byte_ Read = function number			
Type registers	R8 - R15 Registers in the terminal's internal ROM The type and system parameters are programmed permanently by the manufacturer and can only be read by the user, but cannot be modified.			
	R8: Terminal type The terminal type in register R8 is needed to identify the terminal.			
	Do: Cotturare version V.v.			
	R9: Software version X.y The software version can be read as an ASCII character string.			
	R10: Data length			
	R10 contains the number of multiplexe	ed shift registers and their length in		
	bits.			
	The bus coupler sees this structure.			
	R11: Signal channels			
	In comparison with R10, the number of	f logically existing channels is		
	located here. For example, one physic	• • •		
	consist of several signal channels.	, <u> </u>		
	R12: Minimum data length			
	The respective byte contains the minir	num data length of a channel to be		
	transferred. The status byte is omitted	-		
	aansionoa. The status byte is offitted			

R13: Data type register

	Data type register			
	0x00	Terminal without valid data type		
	0x01	Byte array		
	0x02	1 byte n bytes structure		
	0x03	Word array		
	0x04	1 byte n words structure		
	0x05	Double word array		
	0x06	1 byte n double words structure		
	0x07	1 byte 1 double word structure		
	0x08	1 byte 1 double word structure		
	0x11	Byte array with a variable logical channel length		
	0x12	1 byte n bytes structure with a variable logical channel length (eg 60xx)		
	0x13	Word array with a variable logical channel length		
	0x14	1 byte n words structure with a variable logical channel length.		
	0x15	Double word array with a variable logical channel length		
	0x16	1 byte n double words structure with a variable logical channel length		
	R14: not u	sed		
	R15: Alian	ment bits (RAM)		
	•	terminal is set to a byte limit in the terminal bus with the		
	alignment bi	-		
Manufacturer Parameters	R16 - R30 (SEEROM	is the area of the "Manufacturer Parameters"		
		,		
	programmed control syste	cturer parameters are specific to each terminal type. They are d by the manufacturer, but can also be modified from the em. The manufacturer parameters are stored permanently in a OM in the terminal and are therefore not destroyed by power		
	failures.			
	-	ers can only be modified after setting a code word in R31.		
User Parameters	The applicat be modified permanently by power fai	" Application Parameters" area (SEEROM) ion parameters are specific to each terminal type. They can by the programmer. The application parameters are stored in a serial EEPROM in the terminal and cannot be destroyed lures. From software version 2.A, the user area is write- way of a code word.		
	R31 Code	e word register in the RAM		
	The code word 0x1235 must be entered here to enable modification of parameters in the user area. Write protection is set if a different value is entered in this register. When write protection is inactive, the code word is returned during reading of the register. The register contains the value zero when write protection is active.			
	This register	ure register defines the operating modes of the terminal. For example, a scaling can be activated for the Analog I/O`s.		
	R33 - R47 Registers the	at depend on the terminal type.		

Extended application area

R47 - R63

These registers have not yet been implemented.

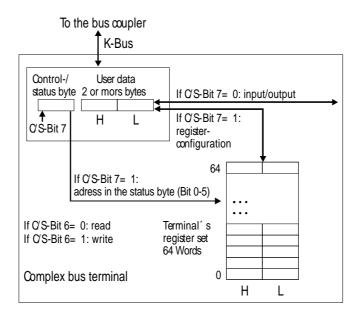
Register access via process
data transfer.

bit 7=1: register mode	When bit 7 of the control byte is set, the first two bytes of the user data are not used for process data transfer, but are written into or read out of the terminal's register set.
bit 6=0: read	In bit 6 of the control byte, you define whether a register is to be read or
bit 6=1: write	written. When bit 6 is not set, a register is read without modification. The value can be taken from the input process image.
	When bit 6 is set, the user data is written into a register. The operation is concluded as soon as the status byte in the input process image has assumed the same value as the control byte in the output process image.
bits 0 to 5: address	The address of the register to be addressed is entered in bits 0 to 5 of the control byte.

Control byte in the register	
mode	

MSB							
REG=1	W/NR	A5	A4	A3	A2	A1	A0

REG = 0 : Process data transfer


REG = 1 : Access to register structure

W/NR = 0 : Read register

W/NR = 1 : Write register

A5..A0 = Register address

A total of 64 registers can be addressed with the addresses A5...A0.

The control or status byte occupies the lowest address of a logical channel. The corresponding register values are located in the following 2 data bytes. (The BK2000 is an exception to this rule: here, an unused data byte is inserted after the control or status byte, thus setting the register value to a word limit.)

Example

Reading register 8 in the BK2000 with a KI3022 and the end terminal.

If the following bytes are transferred from the controller to the terminal,

Byte0	Byte1	Byte2	Byte3
0x88	0xXX	0xXX	0xXX

the terminal returns the following type designation (0xBCE corresponds to the unsigned integer 3022)

Byte0	Byte1	Byte2	Byte3
0x88	0x00	0xCE	0x0B

A further example Writing register 31 in the BK2000 with an intelligent terminal and the end terminal.

If the following bytes user code word) are transferred from the controller to the terminal),

Byte0	Byte1	Byte2	Byte3
0xDF	0xXX	0x12	0x35

the user code word is set and the terminal returns the register address with the bit 7 for register access as the acknowledgement.

Byte0	Byte1	Byte2	Byte3
0x9F	0x00	0x00	0x00

Terminal-specific register description Process variables

R0: ADC raw value X_R

This register contains the ADC raw value of the connected thermocouple in accordance with (Eq. 0.1)

(0x0000 corresponds to approximately -125mV, 0x8000 to approximately 0V, 0xFFFF to approximately 125mV, i.e. gain and offset errors are included)

R1-R5: no function

R6: diagnostic register High byte: not used

Low byte: status byte

Manufacturer parameters **R16: hardware version number** The hardware version number of the terminal is stored in this register.

R17: offset – hardware B_a 16 bit signed integer

The offset of the terminal is adjusted via this register (Eq. 1.2). Register value approximately 0x0000

R18: gain-hardware A_a

The gain of the terminal is adjusted via this register (Eq. 1.2). Register value approximately 0x3D4X

R19: manufacturer offset B_h 16 bit signed integer [0x0000]

This register contains the offset of the manufacturer's linear equation (1.6). The linear equation is activated via R32.

R20: manufacturer scaling A_h 16 bit signed integer *2^-8 [0x00A0]

This register contains the scaling factor of the manufacturer's linear equation (1.6). The linear equation is activated via R32.

R21: manufacturer gain adjustment for comparison voltage [approximately 0x01XX]

Application parameters

R32: feature register:

[0x1006]

Feature bit No.		Description of the operating mode
Bit 0	1	User scaling (R33, R44) active [0]
Bit 0	1	Manufacturer scaling (R19, R20) active [1]
Bit 2	1	Watchdog timer active [1]
Dit Z	1	By default, the watchdog timer is on.
Bit 3	1	Signed integer [0]
		Instead of 2's complement notation, the
		signed integer format is active. $(-1 = 0x8001)$
Bit 4	1	Siemens output format [0]
		With this bit, status flags are inserted in the three least significant bits (see below).
Bit 7-5	-	Not used
Bit 8	- 1	Comparison temperature off [0]
Bit 9		Not used
Bit 10	-	No check of the low measurement range
Dit 10	I	limit. [0]
Bit	Thermocouple	Valid measurement range
15 14 13 12	used	
0 0 0 0	Type:L	-25°C - 900°C
0001	Type: K	-100°C - 1370°C
0010	Type: J	-100°C - 1200°C
0 0 4 4		
0011	Type: E	-100°C - 1000°C
0 1 0 0	Туре: Е Туре: Т	-100°C - 1000°C -100°C - 400°C
	••	
0100	Туре: Т	-100°C - 400°C -100°C - 1300°C -25°C - 600°C
0 1 0 0 0 1 0 1	Type: T Type: N	-100°C - 400°C -100°C - 1300°C
0 1 0 0 0 1 0 1 0 1 1 0	Type: T Type: N Type: U	-100°C - 400°C -100°C - 1300°C -25°C - 600°C
0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1	Type: T Type: N Type: U Type: B	-100°C - 400°C -100°C - 1300°C -25°C - 600°C 600°C - 1800°C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Type: T Type: N Type: U Type: B Type: R Type: S Output in μV	-100°C - 400°C -100°C - 1300°C -25°C - 600°C 600°C - 1800°C 0°C - 1700°C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Type: T Type: N Type: U Type: B Type: R Type: S	-100°C - 400°C -100°C - 1300°C -25°C - 600°C 600°C - 1800°C 0°C - 1700°C 0°C - 1700°C

Output format

If only manufacturer scaling is active via the feature register, the output format is as follows:

1Digit <=> 1/10 °C or 1Digit <=> 6.4 μV

If no scaling is active, the otuput format is as follows:

1Digit <=> 1/16 °C or 1Digit <=> 4 μV

If the Siemens output format is selected, the three least significnt bits are used for status evaluation. The process data item is mapped in the bits 3-15, and bit 15 is the sign bit. The scaling of the measured value in accordance with the Siemens standard must be achieved via user scaling.

Measured value	Bit 3-15	Bit 2	Bit 1	Bit0
		Х	ERROR	Overflow
out of range		0	0	1
in range	Process data item	0	0	0

R33: user offset B_w

16 bit signed integer This register contains the offset of the user linear equation (1.7). The linear equation is activated via R32.

R34: user scaling A_w

16 bit signed integer * 2^{-8} This register contains the scaling factor of the user linear equation (1.7). The linear equation is activated via R32.

CONTROL byte during process data exchange	The control byte is transferred from the controller to the temrinal. In the case of the KL3302/KL3312, the control byte has no function.
STATUS byte during process data exchange	The status byte is transferred from the terminal to the controller. The status byte contains various status bits of the analog input terminals KL3002 and KL3312. In the case of the KL3312, the Error bit and the Overrange bit are set in the event of a wire breakage.
	Status byte: Bit 7 = 0 Bit6= 1: ERROR – General error bit Bit5- Bit2: not used Bit1= 1: overrange Bit0= 1: underrange
KL3302 adjustment	The terminal KL3302 is adjusted when delivered. To compensate for tolerances of the external components, gain and offset registers are implemented for adjusted of each channel's thermocouple voltage. These are R17 (thermocouple voltage offset) and R18 (thermocouple voltage gain) and, for adjustment of the comparison point temperature (temperature of the transition point from the thermocouple to the terminal contacts), a gain register R21 that is identical for both register sets.

As from software version "1A", adjustment can be carried out as follows:

First of all adjust the offset with 0V input voltage with the comparison temperature and linearisation off. To do this, enter 0xF100 in the feature register. This is followed by gain adjustment with a voltage that must not exceed 125 mV (typical value: 70 mV). With this setting of the terminal, and with manufacturer scaling deactivated, the voltage output is 4 microvolts per digit.

Gain and offset adjustment of the thermocouple voltage is carried separately for each channel.

Then adjust the temperature of the comparison point. To enable this, you must select a thermocouple via the feature register and offset of the comparison point temperature must be active (R32 0x1006 Type K) with the inputs shorted (0V), the temperature of the contacts is determined and the temperature output by the terminal (recorded via an internal temperature sensor) is set accordingly (by means of R21).

The compariosn point temperature must be adjusted once for each terminal, i.e. R21 is identical for both channels.

Annex

As already described in the chapter on terminal configuration, each bus terminal is mapped in the bus coupler. In the standard case, this mapping is done with the default setting in the bus coupler / bus terminal. This default setting can be modified with the TRS Configuration software KS2000 or using Master Configuration (eg ComProfibus). The following tables provide information on how the KL3302/3312 maps itself in the bus coupler depending on the set parameters.

Mapping in the bus coupler The KL3302/3312 is mapped in the bus coupler depending on the set parameters. If the terminal is evaluated completely, the terminal occupies memory space in the process image of the inputs and outputs.

		I/O Offset	High Byte	Low Byte
Complete evaluation	= 0	3		
MOTOROLA format	= 0	2		
Word alignment	= X	1	D1 – 1	D0 - 1
		0	D1 – 0	D0 - 0
		I/O Offset	High Byte	Low Byte
Complete evaluation	= 0	3		
MOTOROLA format	= 1	2		
Word alignment	= X	1	D0 - 1	D1 – 1
		0	D0 - 0	D1 – 0
		I/O Offset	High Byte	Low Byte
Complete evaluation	= 1	4		
MOTOROLA format	= 0	3	D1 - 1	D0 – 1
Word alignment	= 0	2	CT/ST - 1	D1 - 0
		1	D0 – 0	CT/ST - 0
		I/O Offset	High Byte	Low Byte
Complete evaluation	= 1	4		
MOTOROLA format	= 1	3	D0 – 1	D1 - 1
Word alignment	= 0	2	CT/ST - 1	D0 – 0
		1	D1 - 0	CT/ST - 0
		I/O Offset	High Byte	Low Byte
Complete evaluation	= 1	4	D1 - 1	D0 – 1
MOTOROLA format	= 0	3		CT/ST - 1
Word alignment	= 1	2	D1 - 0	D0 – 0
		1		CT/ST - 0
		I/O Offset	High Byte	Low Byte
Complete evaluation	= 1	4	D0 – 1	D1 - 1
MOTOROLA format	= 1	3		CT/ST - 1
Word alignment	= 1	2	D0 - 0	D1 - 0
-		1		CT/ST - 0

Legend

<u>Complete evaluation: the terminal is mapped with control / status byte.</u> Motorola format: The Motorola or Intel format can be set.

Word alignment: The terminal is at a word limit in the bus coupler.

CT: Control Byte (appears in the PI of the outputs).

ST: Status Byte (appears in the PI of the inputs).

D0 - 0: D0 = Data-Low-Byte, 0 = Channel 0

D1 – 1 : D1 = Data-High-Byte, 1 = Channel 1

Table of the KL3302/3312 register set

Address	Description	Default	R/W	Storage medium
R0	Raw ADC value	variable	R	RAM
R1	not used	0x0000	R	
R2	not used	0x0000	R	
R3	not used	0x0000	R	
R4	not used	0x0000	R	
R5	not used	0x0000	R	
R6	Diagnostic register	variable	R	RAM
R7	Command register - not used	0x0000	R	
R8	Terminal type	3302/ 3312	R	ROM
R9	Software version number	0x????	R	ROM
R10	Multiplex-shift register	0x0218	R	ROM
R11	Signal channels	0x0218	R	ROM
R12	minimum data length	0x0098	R	ROM
R13	Data structure	0x0000	R	ROM
R14	not used	0x0000	R	-
R15	Alignment-register	variable	R/W	RAM
R16	Hardware version number	0x????	R/W	SEEROM
R17	Hardware offset adjustment	specific	R/W	SEEROM
R18	Hardware gain adjustment	specific	R/W	SEEROM
R19	Manufacturer scaling: offset	0x0000	R/W	SEEROM
R10	Manufacturer scaling: gain	0x0000	R/W	SEEROM
R21	Hardware adjustment compare temperature	specific	R/W	SEEROM
R22	not used	0x0000	R/W	SEEROM
R23	not used	0x0000	R/W	SEEROM
R24	not used	0x0000	R/W	SEEROM
R25	not used	0x0000	R/W	SEEROM
R26	not used	0x0000	R/W	SEEROM
R27	not used	0x0000	R/W	SEEROM
R28	not used	0x0000	R/W	SEEROM
R29	not used	0x0000	R/W	SEEROM
R30	not used	0x0000	R/W	SEEROM
R31	Code word register	variable	R/W	RAM
R32	Feature register	0x1006	R/W	SEEROM
R33	User offset	0x0000	R/W	SEEROM
R34	User gain	0x0100	R/W	SEEROM
R35	not used	0x0000	R/W	SEEROM
R36	not used	0x0000	R/W	SEEROM
R37	not used	0x0000	R/W	SEEROM
R38	not used	0x0000	R/W	SEEROM
R39	not used	0x0000	R/W	SEEROM
R40	not used	0x0000	R/W	SEEROM
R41	not used	0x0000	R/W	SEEROM
R42	not used	0x0000	R/W	SEEROM
R43	not used	0x0000	R/W	SEEROM
R44	not used	0x0000	R/W	SEEROM
R45	not used	0x0000	R/W	SEEROM
R46	not used	0x0000	R/W	SEEROM
R47	not used	0x0000	R/W	SEEROM